
In the previous columns, we
have examined the process of

writing our own visual and non-
visual components, optionally
based on a DLL engine, and
adding a custom bitmap. This
time, we’ll focus on the final touch
of Component Building: the
integrated Help file.

First of all, let’s just build a small
example component with some
properties and methods. This time,
I’d like to write yet another DLL
wrapper, around the UUCODE.DLL.
The UUCode dynamic link library
implements the uuencode and
uudecode file conversion algo-
rithms that can be used to transfer
files on the internet (previously
used in unix-to-unix file transfers).
The objective of uuencoding is to
encode a file which may contain
any (binary) characters into a an-
other file with a standard character
set (‘!"#$%&’()*+,-./012356789:;<=>
?@ABC...XYZ[\]^_) that can be sent
reliably over diverse networks.

Import Unit
Before we start, we first need to
write an explicit import unit for the
UUCODE.DLL. It’s important to
write an explicit import unit and
not an implicit one, because we
would like to use the remaining
part of COMPLIB.DCL even if our
DLL is not available. Listing 1
shows the import unit.

TUUCode Component
The component itself has two
published properties (inputfile
and outputfile), two hidden
private fields (finputfilename and
foutputfilename to hold the
property values), two public meth-
ods (uuencode and uudecode) and
one public constructor to check
and see if the UUCODE.DLL could
be loaded (otherwise the construc-
tion of the component will fail with
a EUUCode exception “UUCode.DLL

Under Construction:
Component Help
by Bob Swart

{$A+,B-,D-,F-,G+,I+,K+,L-,N+,P+,Q-,R-,S+,T+,V-,W-,X+,Y-}
unit UUCode; { NB for usage notes see file on disk }
interface
Type
 TCallBack = procedure (Position, Size: LongInt); { export; }
Const
 UUCodeLoaded: Boolean = False; { presume nothing! }
var
 UUEncode: function(FileName: PChar): Word;
 UUDecode: function(FileName: PChar): Word;
 UUEncoder: function(InFile,OutFile: PChar; Flag: Word; Unix: Boolean;
 CallBack: TCallBack): Word;
 UUDecoder: function(FileName: PChar; CallBack: TCallBack): Word;
implementation
{$IFDEF WINDOWS}
uses WinProcs;
Const SEM_NoOpenFileErrorBox = $8000;
{$ELSE}
uses WinAPI;
{$ENDIF}
var
 SaveExit: pointer;
 DLLHandle: Word;
procedure NewExit; far;
 begin
 ExitProc := SaveExit;
 FreeLibrary(DLLHandle)
 end {NewExit};
begin
 {$IFDEF WINDOWS}
 SetErrorMode(SEM_NoOpenFileErrorBox);
 {$ENDIF}
 DLLHandle := LoadLibrary(’UUCODE.DLL’);
 if DLLHandle >= 32 then begin
 UUCodeLoaded := True;
 SaveExit := ExitProc;
 ExitProc := @NewExit;
 @UUEncode := GetProcAddress(DLLHandle,’UUENCODE’);
 @UUDecode := GetProcAddress(DLLHandle,’UUDECODE’);
 @UUEncoder := GetProcAddress(DLLHandle,’UUENCODER’);
 @UUDecoder := GetProcAddress(DLLHandle,’UUDECODER’)
 end
end.

➤ Listing 1 Import unit for UUCODE.DLL

not loaded.” Finally, we have two
additional protected methods
called InputFilePChar and
OutputFilePChar that are needed
since the TUUCode component
works internally with String types
to store the input and output
filenames, while the UUCODE.DLL
is expecting Windows-style null-
terminated PChar types. No big deal
and only visible to the component
builder anyway. The component is
shown in Listing 2.

Casualties
I’m sure that if you’ve read this
column before the code in Listing 2
will hold few surprises for you; it’s

just another component wrapper
based on an explicit import unit.
But what about for the casual Del-
phi user? How will the component
user (rather than builder) react if
s/he sees the two published prop-
erties? Will s/he in fact know what
TUUCode actually does? It takes an
inputfile and an outputfile, but
what is that darn uuencode algo-
rithm? Some kind of cryptography
perhaps?

Personally, whenever I’m not
sure about something, I always hit
the F1 key to get help on the
component itself or one of its
properties. Only, since this is but a
“third-party” custom component,

20 The Delphi Magazine Issue 4

Delphi cannot just make up some
help for us and instead responds
with the bleak message “There is no
context-sensitive Help registered for
this topic”.

OK, so this may just be the end
of the usage period of my TUUCode
component, right? Wrong! Delphi is
an open enough environment to let
us even install our own Component
Help! And that’s what we’ll be
doing in the rest of this article.

WinHelp
First of all, we need to create a
WinHelp skeleton file (using a
WinHelp Authoring tool, such as
ForeHelp for example) with only
eight topics (six real topics and two
popup pages):
➣ TUUCode (main)
➣ constructor Create
➣ methods (popup page)
➣ procedure UUEncode (method)
➣ procedure UUDecode (method)
➣ properties (popup page)
➣ property InputFile
➣ property OutputFile
Actually only three of them are
really needed, namely the TUUCode
main topic and the two property
topics. The other topics are only to
make the help support somewhat
more complete.

I used ForeHelp 1.04 to generate
the help file skeleton. A prime page
for the TUUCode component with
two popup pages (properties and
methods) and one jump to the
constructor. The two popup pages
would each have two entries
(InputFile and OutputFile, and
UUEnCode and UUDeCode respec-
tively). This way, the way the
TUUCode component’s help works is
comparable to the general Delphi
help files (just drop a TEdit compo-
nent and hit F1 to see the general
Component Help outline of Delphi
itself). Figure 1 shows the outline
(in ForeHelp’s Grapher utility).

After I generated the help
skeleton, I saved the project and
edited the .RTF file with WinWord
2.0c (any RTF-editor will do). Using
WinWord, I could enter the
contents of the eight topics, and
more important, I could add the
special “B”-keywords that Delphi
needs in order to make your help
file really integrated with the

unit TBUUCode;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, UUCode;
type
 EUUCode = class(Exception);
 TUUCode = class(TComponent)
 public { Public class declarations (override) }
 constructor Create(AOwner: TComponent); override;
 private { Private field declarations }
 FInputFileName: String;
 FOutputFileName: String;
 protected { Protected method declarations }
 function InputFilePChar: PChar;
 function OutputFilePChar: PChar;
 public { Public interface declarations }
 procedure UUEncode;
 procedure UUDecode;
 published { Published design declarations }
 property InputFile: String read FInputFileName write FInputFileName;
 property OutputFile: String read FInputFileName write FInputFileName;
 end;
procedure Register;

implementation

constructor TUUCode.Create(AOwner: TComponent);
begin
 if not UUCodeLoaded then raise EUUCode.Create(’UUCode.DLL not loaded’);
 inherited Create(AOwner);
end {Create};

function TUUCode.InputFilePChar: PChar;
begin
 FInputFileName[Length(FInputFileName)+1] := #0;
 InputFilePChar := @FInputFileName
end {InputFilePChar};

function TUUCode.OutputFilePChar: PChar;
begin
 FOutputFileName[Length(FOutputFileName)+1] := #0;
 OutputFilePChar := @FOutputFileName
end {OutputFilePChar};

procedure TUUCode.UUEncode;
var Error: Word;
begin
 if FInputFileName = ’’ then
 raise EUUCode.Create(’InputFileName is empty’);
 if FOutputFileName = ’’ then
 raise EUUCode.Create(’OutputFileName is empty’);
 Error := UUEncoder(InputFilePChar,OutputFilePChar,664,False,nil);
 case Error of
 1: raise EUUCode.Create(’UUEnCode: input file is output file’);
 2: raise EUUCode.Create(’UUEnCode: input file does not exist’);
 3: raise EUUCode.Create(’UUEnCode: output file exists’);
 4: raise EUUCode.Create(’UUEnCode: could not create output file’);
 5: raise EUUCode.Create(
 ’UUEnCode: DLL busy, try again later (shared buffers)’)
 { else OK }
 end
end {UUEncode};

procedure TUUCode.UUDecode;
var
 Error: Word;
begin
 if FInputFileName = ’’ then
 raise EUUCode.Create(’InputFileName is empty’);
 Error := UUDecoder(InputFilePChar,nil);
 case Error of
 1: raise EUUCode.Create(’UUDECode: input file is output file’);
 2: raise EUUCode.Create(’UUDECode: input file does not exist’);
 3: raise EUUCode.Create(’UUDECode: output file exists’);
 4: raise EUUCode.Create(’UUDeCode: could not create output file’);
 5: raise EUUCode.Create(
 ’UUDeCode: DLL busy, try again later (shared buffers)’)
 { else OK }
 end
end {UUDecode};

procedure Register;
begin
 RegisterComponents(’Dr.Bob’, [TUUCode]);
end {Register};
end.

➤ Listing 2 TUUCode Component

November 1995 The Delphi Magazine 21

Delphi help files (ie footnotes
which have “B” as the custom
mark, as shown in the dialog from
WinWord in Figure 2; the footnote
panel, showing the footnote text, is
underneath the dialog).

The “B”-footnotes are only
needed for the three topics that
actually integrate with Delphi,
which are the TUUCode main page
and the two properties (events are
also on this list, but we have no
events for the TUUCode component).

The TUUCode main topic page
needs a “B”-footnote that says
class_TUUCode, ie the class name
with class_ as prefix. Also, the
property topics need “B”-footnotes
with the name of the property and
the prop_ prefix. For class-specific
properties, we need to include the
class name as well, for example
prop_TUUCodeInputFile.

Keywords
After we’ve added the three
“B”-footnotes to the help file (and
even before we’ve actually written
the contents of the help file), we
can generate the keywords from
this file that are needed to
integrate with the Delphi multihelp
environment.

At this point, Delphi’s own Com-
ponent Writer’s Guide seems to be a
little out of date. First of all, the
KWGEN application is a Windows
application and not a DOS one any
more. Second, we don’t need to put
the keyword file in the same
directory as our compiled unit and
help file, as we’ll see shortly.

KWGEN allows us to browse for
any .HPJ file. It then opens the
corresponding .RTF file and scans
(among others) for the
“B”-footnotes to generate a special
.KWF keyword file (see Figure 3).

Installation
As I’ve said before, we don’t need
to put the generated .KWF file next
to the compiled unit and help file.
Instead, we seem to be forced to
place this file in the \DELPHI\HELP
directory where the other Delphi
.KWF files can be found. Now, we
can use HELPINST.EXE to generate
the Delphi MultiHelp master index
DELPHI.HDX file which contains
references to all .KWF files in the

➤ Figure 2 Entering “B”-Footnotes in Word for Windows

list. Remember to close Delphi
before you attempt to do this, and to
make a backup of the DELPHI.HDX
file (so if something goes wrong,
you can always restore your
master index). See Figure 4. The
HELPINST program will start in the
DELPHI\HELP directory, by the way,

while the DELPHI.HDX file resides
in the \DELPHI\BIN directory. Just to
let you know...

I found that if I place the file
TBUUCODE.KWF anywhere else,
then the second time I fire up
HELPINST it will say that the file
TBUUCODE.KWF was not found, so

➤ Figure 4 Delphi’s HELPINST utility

➤ Figure 1
Outline of
the TUUCode
component help

➤ Figure 3
Using
KWGEN

22 The Delphi Magazine Issue 4

I had to enter it again. I overcame
this problem by placing all .KWF
files in the same directory.

There’s a similar story for the
TBUUCODE.HLP file. We find the
Component Writer’s Guide recom-
mends placing this help file in the
same directory as the compiled
component unit, but I found that
the easiest (and default) method
was to place it in the \DELPHI\BIN
directory. If we want to place it
anywhere else, we need to modify
the WINHELP.INI file.

Component Help
Well, now that we’ve generated a
keyword file and integrated it into
the Delphi MultiHelp master index,
all we need to do is to finish our
help file itself, then place it in the
correct directory (\DELPHI\BIN by
default). Then we can activate the
TUUCode component help in several
ways (provided we’ve also
installed the component): drop a
TUUCode component on a form and
press F1 (TUUCode main help page),
or, go to the Object Inspector on
property InputFile and press F1

(property help). Figure 5 shows the
final help file.

Finishing Touch
If we want to search for topics in
the help file we’ve just made, we
have to make sure we’ve also
included regular “K”-footnotes (the
keywords to the topics), so we can
even search in the help file by using
the Search All button and typing
TUUCode, for example.

Next Time
So, you think now you’ve seen it all
when it comes to component
building? Not quite. Next time we’ll

➤ Figure 5
The help
file in
action

do something we’ve not done
before (and I mentioned it earlier):
adding custom events to our
components. What’s that: custom
events? How? What? Yes, that’s
exactly what we’re gonna find out
next time. Stay tuned!

Bob Swart is a professional 16-
and 32-bit software developer
using Borland Pascal, C++ and
Delphi. In his spare time, he likes
to watch video tapes of Star Trek
Voyager with his 1.5 year old son
Erik Mark Pascal. Email Bob on
100434.2072@compuserve.com

	Import Unit
	TUU Code Component
	Casualties
	WinHelp
	Keywords
	Installation
	Component Help
	Finishing Touch
	Next Time

